Microstructure and nonlinear electrical properties of ZnO-Pr₆O₁₁-CoO-Cr₂O₃-La₂O₃-based varistors

CHOON-WOO NAHM Department of Electrical Engineering, Dongeui University, Busan 614-714, Korea

Published online: 16 September 2005

ZnO varistors are attractive ceramic semiconductor devices made by sintering ZnO powder with minor additives, such as Bi_2O_3 , Pr_6O_{11} , CoO, and so on. Each ZnO grain acts as if it is has a semiconductor junction at the grain boundary. Since nonlinear electrical behavior occurs at each boundary the varistors can be considered as a multijunction device composed of many series and parallel connection of grain boundaries. The grain size distribution plays a major role in electrical behavior.

ZnO varistors exhibit highly nonlinear voltagecurrent (V-I) characteristics because of the electronic phenomena occurring near the grain boundaries. In other words, they act as an insulator below the varistor voltage, called the breakdown voltage, and a conductor thereafter. Moreover, they possess excellent surge withstanding capability. They, therefore, have been widely utilized as the surge absorbers in electronic systems and the core elements of surge arresters in electric power systems [1, 2]. Many researchers wish to fabricate ZnO varistors with a higher nonlinearity. The majority of commercial varistors are Bi₂O₃-based ZnO varistors containing Bi₂O₃, which inherently induces nonlinear properties. Recently, Pr₆O₁₁-based ZnO varistors have been studied in order to improve a few drawbacks [3] associated with Bi_2O_3 [4–14].

Nahm *et al.* reported that ZnO-Pr₆O₁₁-CoO-Cr₂O₃based varistors have highly nonlinear properties when rare-earth metal oxides, R_2O_3 (R = Er, Y, Dy) are used [6–14]. This paper reports on ZnO-Pr₆O₁₁-CoO-Cr₂O₃-La₂O₃ (in short ZPCCL)-based varistors which exhibit excellent nonlinearity.

Reagent-grade raw materials were used in proportions of $(98.0 - x) \mod\%$ ZnO, 0.5 mol% Pr₆O₁₁, 1.0 mol% CoO, 0.5 mol% Cr₂O₃, x mol% La₂O₃ (where x = 0.0-2.0). The mixture was calcined in air at 750 °C for 2 hr. The calcined powders were pressed into discs 10 mm in diameter and 2 mm in thickness at a pressure of 80 MPa. The discs were sintered at 1300 °C in air for 1 hr. The size of the final samples was about 8 mm in diameter and 1.0 mm in thickness. Silver paste was coated on both faces of the samples and ohmic contacts were formed by heating at 600 °C for 10 min. The electrodes were 5 mm in diameter.

The surface microstructure was examined by scanning electron microscopy (SEM, Model S2400, Hitachi, Japan). The crystalline phases were identified by an X-ray diffractometry (XRD, Rigaku D/max 2100, Japan) with CuK_{α} radiation. The compositional analy-

sis of the selected areas was determined by an attached energy dispersion X-ray analysis (EDX) system. The average grain size (*d*) of the varistor ceramics was determined by the linear intercept method [15]. The sintered density (ρ) was measured by the Archimedes method. The *V*-*I* characteristics of the varistors were measured using a Keithley 237 unit. The varistor voltage ($V_{1 \text{ mA}}$) was measured at a current density of 1.0 mA/cm² and the leakage current (I_L) was measured at 0.80 $V_{1 \text{ mA}}$. In addition, the nonlinear exponent (α) was determined from $\alpha = 1/(\log E_2 - \log E_1)$, where E_1 and E_2 are the electric fields corresponding to 1.0 and 10 mA/cm², respectively.

Fig. 1 shows the SEM micrographs of ZPCCL-based ceramics with various La₂O₃ contents. It is well known that the microstructure of Pr₆O₁₁-based ZnO varistor ceramics consist of only two phases [4]: ZnO grain (bulk phase) and intergranular layer (second phase). The intergranular layers in ZPCCL-based ceramics were Pr- and La-rich phases as determined by XRD analysis, as shown in Fig. 2. As can be seen in the figure, three diffraction peaks were revealed in the ZPCLbased ceramics, namely, ZnO grains, Pr oxides, and La oxide. It was found from EDX that these coexist at the grain boundaries and the nodal points as if they were a single phase. No La peak was found in the ZnO grain within the EDX detection limit (Fig. 3). It was observed by SEM that as the La₂O₃ content increases, the intergranular phase gradually becomes more concentrated at the nodal points. These microstructures are not greatly different from varistor ceramics doped with Er, Y, and Dy, as reported previously [6, 9, 14]. As the La₂O₃ content increases, the density increased from 4.71 to 5.77 g/cm³ for 1.0 mol%, with further additions did not affecting density, which saturated at 5.77 g/cm³. The average grain size increases from 4.0to 8.5 μ m with increasing La₂O₃ content due to precipitation of Pr₆O₁₁ and La₂O₃ at grain boundaries. The detailed microstructual parameters are summarized in Table I.

Fig. 4 shows the E–J characteristics of the ZPCCLbased varistors with various La₂O₃ contents. The varistors show conduction characteristics dividing into two regions: pre-breakdown at low field and breakdown at high field. The sharper the knee of the curve between the two regions, the better the nonlinearity. It can be forecasted that the 0.5 mol% La₂O₃-doped varistor should exhibit the best nonlinear properties because

Figure 1 SEM micrographs of ZPCCL-based ceramics with various La₂O₃ contents: (a) 0.0 mol%, (b) 0.5 mol%, (c) 1.0 mol%, and (d) 2.0 mol%.

TABLE I Microstrucrural and V-I characteristic parameters of ZPCCL-based varistors with various La₂O₃ contents

La ₂ O ₃ content (mol%)	ho (g/cm ³)	<i>d</i> (µm)	V _{1mA} (V/mm)	V _{gb} (V/gb)	α	$I_{\rm L}$ ($\mu {\rm A}$)
0.0	4.71	4.0	503.5	2.0	63.0	2.1
0.5	5.40	6.9	427.2	2.9	81.6	0.2
1.0	5.77	7.9	108.0	0.8	7.1	50.6
2.0	5.77	8.5	9.4	0.08	3.1	100.2

Theoretical density (ρ) of $ZnO = 5.78 \text{ g/cm}^3$

Figure 2 XRD patterns of ZPCCL-based ceramics with various La_2O_3 contents: (a) 0.0 mol%, (b) 0.5 mol%, (c) 1.0 mol%, and (d) 2.0 mol%.

it has the sharpest knee. On adding more La₂O₃, the knee gradually becomes less pronounced and the nonlinear properties reduce. The detailed V-I characteristic parameters are summarized in Table I. The varistor voltage ($V_{1 \text{ mA}}$) decreased abruptly from 503.5 to 9.4 V/mm as the La₂O₃ content increased. This is at-

Figure 3 EDX analysis of ZPCCL-based ceramics with 0.5 mol% La_2O_3 content; (a) ZnO grain, (b) grain boundary, and (c) intergranular layer.

tributed firstly to the decrease in the number of grain boundaries caused by the increase in the ZnO grain size, and secondly, to the abrupt decrease of varistor voltage per grain boundary ($V_{\rm gb}$). The varistors doped with La₂O₃ exceeding 0.5 mol% exhibited much lower $V_{\rm gb}$ values than the general values of 2–3 V/gb. These

Figure 4 E-J characteristics of ZPCCL-based variators with various La₂O₃ contents.

Figure 5 Variation of nonlinear exponent and leakage current of ZPCCL-based variators as a function of La_2O_3 contents.

varistors will exhibit very poor nonlinear properties presumably.

Fig. 5 shows the variation of the nonlinear exponent (α) and the leakage current (I_L) as a function of La₂O₃ content. The α value was calculated to be 63.0 for the sample without La₂O₃. This value was much higher than values for the quaternary system ZnO-Bi₂O₃-CoO-Cr₂O₃, which never exceeded 25 [16]. As the La₂O₃ content increases, the α value increased, achieving a maximum value (81.6) for the sample with 0.5 mol% La₂O₃. This represents excellent nonlinearity, which cannot be easily obtained in ZnO varistors. This is the highest value in Pr₆O₁₁-based ZnO varistors

of five components that has been achieved. Increasing additive content further to 2.0 mol% caused the α value to decrease. On the other hand, as the La₂O₃ content increases, the I_L value decreased, achieving a minimum value (0.2 μ A) for the sample with 0.5 mol% La₂O₃. Increasing the additive content further to 2.0 mol% caused the I_L value to increase significantly. It can be seen that the variation of I_L shows the inverse relationship to the variation of α with La₂O₃ content. Therefore, it is clear that the nonlinear properties are strongly influenced by the incorporation of La₂O₃.

In summary, a moderate La_2O_3 content, in the vicinity of 0.5 mol%, can greatly improve the nonlinear properties of quaternary system ZnO-Pr₆O₁₁-CoO-Cr₂O₃-based varistors.

Acknowledgments

This work was supported by the ECC (Electronic Ceramics Center) at Dongeui University as RRC. TIC program through KOSEF (Korea Science and Engineering Foundation), ITEP (Korea Institute of Industrial Technology Evaluation and Planning), and Busan Metropolitan City.

References

- 1. L. M. LEVINSON and H. R. PILIPP, *Amer. Ceram. Soc. Bull.* **65** (1986) 639.
- 2. T. K. GUPTA, J. Amer. Ceram. Soc. 73 (1990) 1817.
- 3. Y. S. LEE and T. Y. TSENG, *ibid.* 75 (1992) 1636.
- 4. A. B. ALLES and V. L. BURDICK, J. Appl. Phys. 70 (1991) 6883.
- 5. Y.-S. LEE, K.-S. LIAO and T.-Y. TSENG, J. Amer. Ceram. Soc. 79 (1996) 2379.
- 6. C.-W. NAHM, Mater. Lett. 47 (2001) 182.
- 7. Idem., J. Mater. Sci. Lett. 21 (2002) 201.
- 8. Idem., Mater. Lett. 53 (2002) 110.
- 9. Idem., ibid. 57 (2003) 1317.
- 10. Idem., ibid. 57 (2003) 1322.
- 11. Idem., Mater. Chem. Phys. 82 (2003) 726.
- 12. Idem., Solid State Commun. 127 (2003) 389.
- C.-W. NAHM, J.-A. PARK, M.-J. KIM and B.-C. SHIN, J. Mater. Sci. 39 (2004) 307.
- 14. C.-W. NAHM, Mater. Lett. to be published (2004).
- 15. J. C. WURST and J. A. NELSON, J. Amer. Ceram. Soc. 55 (1972) 109.
- 16. M. MATSUOKA, Jpn. J. Appl. Phys. 10 (1971) 736.

Received 26 July 2004 and accepted 6 May 2005